.

...

Ⅰ 光纤传输的传输原理

光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。光纤,不仅可用来传输模拟信号和数字信号,而且满足视频传输的需求。其数据传输率能达几千Mbps。如果在不使用中继器的情况下,传输范围能达到6-8km。综观国内外配线系统的发展,我们可看出这样三个阶段:1、双绞线阶段。在这个阶段语音同大规模数据通信不能混用也适应这样的数据通信。2、同轴电缆 +双绞线阶段。3、光纤阶段。射线光学理论是用光射线去代替光能量传输路线的方法,这种理论对于光波长远远小于光波到尺寸的多模光纤是容易得到简单而直观的分析结果的,但对于复杂问题,射线光学只能给出比较粗糙的概念。多模光纤传输设备所采用的光器件是LED,通常按波长可分为850nm和1300nm两个波长,按输出功率可分为普通LED和增强LED——ELED。多模光纤传输所用的光纤,有62.5mm和50mm两种。在多模光纤上传输决定传输距离的主要因素是光纤的带宽和LED的工作波长,例如,如果采用工作波长1300nm的LED和50微米的光纤,其传输带宽是 400 MHz .km,链路衰减为0.7dB/km,如果基带传输频率F为150MHz,对于出纤功率为-18dBm,接收灵敏度为-25 dBm的光纤传输系统,其最大链路损耗为7 dB,则可计算:ST连接器损耗:2dB(两个ST连接器)光学损耗裕量:2则理论传输距离:L=(7 dB-2 dB-2 dB)/0.7dB/km=4.2 kmL为传输距离,而根据光纤的带宽计算:L=B/F=400 MHz .km/150MHz=2.6km其中 B为光纤带宽,F为基带传输频率,那么实际传输测试时,L£2.6km,由此可见,决定传输距离的主要因素是多模光纤的带宽。9.1单模传输设备单模传输设备所采用的光器件是LD,通常按波长可分为850nm和1300nm两个波长,按输出功率可分为普通LD、高功率LD、DFB-LD(分布反馈光器件)。单模光纤传输所用的光纤最普遍的是G.652,其线径为9微米。1310nm波长的光在G.652光纤上传输时,决定其传输距离限制的是衰减因数;因为在1310nm波长下,光纤的材料色散与结构色散相互抵消总的色散为0,在1310nm波长上有微小振幅的光信号能够实现宽频带传输。1550nm波长的光在G.652光纤上传输时衰减因数很小,单纯从衰减因数考虑,1550nm波长的光在相同的光功率下传输的距离大于1310nm波长的光下的传输的距离,但是实际情况并非如此,单模光纤带宽B与色散因数D的关系为:B=132.5/(DlxDxL)GHz其中L为光纤的长度,Dl为谱线宽度,对于1550nm波长的光,其色散因数如表3为20 ps/(nm .km),假设其光谱宽度等于1nm,传输距离为L=50公里,则有:B=132.5/(DxL)GHz=132.5MHz也就是说,对于模拟波形,采用1550nm波长的光,当传输距离为50公里时,传输带宽已经小于132.5 MHz,如果基带传输频率F为150MHz,那么传输距离已经小于50km,况且实际应用中,光源的谱线宽度往往大于1nm。从上式可以看出,1550nm波长的光在G.652光纤上传输时决定其传输距离限制的主要是色散因数。9.2单模DVI光纤延长器:(可传输HDMI音视频信号)T803-15KM-T (TX) / T803-15KM-R (RX),本产品致力于解决传统铜线电缆DVI连接线传输距离受限制的问题,采用2芯LC单模光纤传输R、G、B信号及数据时钟Clock信号,在分辨率高达1920×[email protected]的情况下,可以延伸传输距离到15千米。具有EDID读写功能,可以将显示器里的EDID存储内容读出并写到DVI发射模块T803-15KM-T(TX)中,使其能够适应不同分辨率的显示器系统。远距离信号传输光纤传输的优势市面上主要的视频传输线有单根导线、双绞线、同轴电缆等,不论任何的电缆类型,它们都是作为信号传输的一种导体。这些不同类型的电缆,在传输不同信号的质量表现也有区别,除了部分特殊的应用,应用于音视频传输的电缆大致以单根导线、双绞线、同轴线和光纤为主。1、光纤几乎不存在任何衰减,只有lc或sc头自身略有衰减,而且这并不会造成距离上的影响,通常在20dB以内,完全忽略不计。除非这条光纤距离太长,例如长达2.2公里的多模光纤,在传输中就彻底没信号了,否则只要有信号,速度就是与发送端相当的。2、抗干扰性强、零掉包率,无论在光纤周围盘绕着多么复杂的强电,传输速度始终保持一致。此外,传输过程中掉包现象的概率几乎为零,测试时200成品多模跳线作为干线,电信的软件在满机时是测不出来。3、使用寿命很长、兼容性高,市场上一般的光纤可以用到10年甚至更久,这一点铜缆网线是无法相比的。而且兼容性很高,光纤在未来网络高速提升中,无论是1兆10兆甚至未来的万兆,10万兆,任何一条跳线都是通用的,不会像铜缆网线那样有5类6类甚至十几类,不会存在淘汰的问题。9.3新纪录2011年3月美国洛杉矶举办的2011年光纤通讯大会(OFC2011)上展示了最新的光纤传输技术。这是德国弗朗霍夫学会海因里希-赫兹研究所与丹麦技术大学研究人员合作完成的,研究人员在长度为29公里的单一玻璃光纤线路上创造了每秒10.2Terabit(太比特)的光纤传输速率新世界纪录,其每秒传输的数据量相当于240张DVD光盘。在此之前的世界纪录是由该研究所创造的每秒2.56Terabit。2011年12月1日,武汉邮电科学研究院宣布,高速光通信实时传输关键技术研究取得突破,在一根光纤上,用正交频分复用技术方式传输的数据量超过240Gb/秒,相当于每秒钟能适时传输240部容量为1G、长度为40分钟的高清电影,又一次刷新世界光通信领域纪录。

Ⅱ 视频信号光纤传输系统分析与应用

视频信号光纤传输主要有两中类型:1、视频模拟信号光纤传输:直接在视频模拟信号传输中进行光电转换后进行光纤传输,此种传输方式距离较近,只能传输一套节目,适合市区内短途、容量小的传输;2、视频数字信号光纤传输:首先是要经过模拟信号转换为数字信号的过程,并且同时是一个或多个视频模拟信号转换为一路数字信号,那么具体的转换设备称为视频编解码设备,按压缩格式不同可以传输一套或多套电视节目,经过编解码设备进行编码后转换为一个45M信号,输入SDH传输设备进行长途传输,到达目的地后进行解码,就可以转换为相应的模拟信号节目。简单的论述就是如此,毕业设计的论文涉及很多技术细节,在此就不多讲了。

Ⅲ 光纤通信系统的发展

光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波 ,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。 FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2~3倍。过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。发达国家对FTTH的看法不完全相同:美国AT&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。日本NTT发展FTTH最早,已经有近200万用户。中国FTTH处于试点阶段。 现广泛采用的ADSL技术提供宽带业务尚有一定优势与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于1Mbps—500kbps影视节目的传输可满足需求。FTTH大量推广受制约。对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,ADSL就难以满足。尤其是HDTV,经过压缩,其传输速率尚需19.2Mbps。正在用H.264技术开发,可压缩到5~6Mbps。通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。可以认为HDTV是FTTH的主要推动力。即HDTV业务到来时,非FTTH不可。 通常有P2P点对点和PON无源光网络两大类。F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。(按照市场价格,PEP比PON经济)PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。(2)BPON:即宽带的PON。(3)OPON:采用通用帧处理的OFP-PON。(4)EPON:采用以太网技术的PON,GPON是千兆以太网的PON。(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。无线接入技术发展迅速。可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,已可商用。如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEE802.11g是可以满足的。而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。如果,所属PON的用户群体,被无线城域网WiMAX(1EEE802.16)覆盖而可利用,那么可不必建设专用的WLAN。接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。FTTH+无线接入是未来的发展趋势。 实际上可表示为:通信输+交换。光纤只是解决传输问题,还需要解决光的交换问题。过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。通信网除了用户末端一小段外,都是光纤,传输的是光信号。合理的方法应该采用光交换。但由于光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。显然是不合理的办法,是效串不高和不经济的。正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。通常在光网里传输的信息,一般速度都是xGbps的,电子开关不能胜任。一般要在低次群中实现电子交换。而光交换可实现高速XGbDs的交换。当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换,没有必要采用不成熟的大容量的光交换。当前,在数据网中,信号以“包”的形式出现,采用所谓“包交换”。包的颗粒比较小,可采用电子交换。然而,在大量同方向的包汇总后,数量很大时,就应该采用容量大的光交换。少通道大容量的光交换已有实用。如用于保护、下路和小量通路调度等。一般采用机械光开关、热光开关来实现。由于这些光开关的体积、功耗和集成度的限制,通路数一般在8—16个。电子交换一般有“空分”和“时分”方式。在光交换中有“空分”、“时分”和“波长交换”。光纤通信很少采用光时分交换。光空分交换:一般采用光开关可以把光信号从某一光纤转到另一光纤。空分的光开关有机械的、半导体的和热光开关等。采用集成技术,开发出MEM微电机光开关,其体积小到mm。已开发出1296x1296MEM光交换机(Lucent),属于试验性质的。光波长交换:是对各交换对象赋于1个特定的波长。于是,发送某1特定波长就可对某特定对象通信。实现光波长交换的关键是需要开发实用化的可变波长的光源,光滤波器和集成的低功耗的可靠的光开关阵列等。已开发出640x640半导体光开关+AWG的空分与波长的相结合的交叉连接试验系统(corning)。采用光空分和光波分可构成非常灵活的光交换网。日本NTT在Chitose市进行了采用波长路由交换的现场试验,半径5公里,共有43个终端节,(试用5个节点),速率为2.5Gbps。自动交换的光网,称为ASON,是进一步发展的方向。集成光电子器件的发展如同电子器件那样,光电子器件也要走向集成化。虽然不是所有的光电子器件都要集成,但会有相当的一部分是需要而且是可以集成的。目前正在发展的PLC-平面光波导线路,如同一块印刷电路板,可以把光电子器件组装于其上,也可以直接集成为一个光电子器件。要实现FTTH也好,ASON也好,都需要有新的、体积小的和廉价的和集成的光电子器件。 众所周知,2000年IT行业泡沫,使光纤通信产业生产规模爆炸性地发展,产品生产过剩。无论是光传输设备,光电子器件和光纤的价格都狂跌。特别是光纤,每公里泡沫时期价格为¥1200,价格Y100左右1公里,比铜线还便宜。光纤通信的市场何时能恢复?根据RHK的对北美通信产业投入的统计和预测,如图2.在2002年是最低谷,相当于倒退4年。有所回升,但还不能恢复。按此推测,在2007-2008年才能复元。光纤通信的市场也随IT市场好转。这些好转,在相当大的程度是由FTTH和宽带数字电视所带动的。FTTH毕竟是信息社会的需求,光纤通信的市场一定有美好的情景。发达国家的FTTH已经开始建设,已经有相当的市场。大体上看,器件和设备随市场的需要,其利润会逐步回升,2007-2008年可能良好。但光纤产业,尽管反倾销成功,价格也仍低迷不起,利润甚微。实际上,在世界范围内,光纤的生产规模过大,而FTTH的发展速度受社会环境、包括市民的经济条件和数字电视的发展的影响,上升缓慢。据了解,有大公司封存几个光纤厂,根据市场情况,可随时启动生产,其结果是始终供大于求。供不应求才能涨价,是通常的市场规律,所以光纤产业要想厚利,可能是2009年后的事情。中国经济不发达地区和小城镇,还需要建设光纤线路,但光纤用量仍然处于供大于求的范围内。对中国市场,FTTH受ADSL的挑战和数字电视HDTV发展的制约,会有所延后。中国大量建设FTTH的社会环境和条件尚未具备,可能需要等待一段时间。不过,北京奥运会需要HDTV的推动和设备价格的下降,会促进FTTH的发展。预计在2007-2008年在中国FTTH可开始推广。不过也有些大城市的所谓中心商业区CBD,有比较强的经济力量,已经采用光纤到住地PTTP来建设。总的来说,中国的FTTH处于试点阶段。试点的作用,一方面是摸索技术和建设的经验,另一方面,还起竞争抢占用户的作用。所以,电信运行商,地方业主都积极对FTTH试点,以便发展宽带业务。因此,广播运行商受到巨大的挑战,广播商应加快发展数字电视的进程,并且要充实节目内容和采取有竞争力的商业模式。如果广播商要发展VOD点播电视,还需要对电缆电视网双向改造,如果采用光纤网,可更充分地适应未来的技术发展和市场需求。 工业和信息化部在2012年5月发布的《宽带网络基础设施“十二五”规划》中提出,到2015年,全国基本实现“城市光纤到楼入户,农村宽带进乡入村”。城市家庭接入带宽达到20兆比特/秒,农村家庭接入带宽达到4兆比特/秒;实现光纤到户覆盖两亿户,用户超过4000万,城市新建住宅光纤到户率达到60%以上。“我国宽带市场的接入方式与技术以ADSL为主,而其他宽带速率高的国家基本上是以光纤接入为主。”中国工程院院士赵梓森说,实现光纤入户是宽带战略最重要的一环。中国科学院院士干福熹表示,光纤通信具有信息容量大、传输距离远、信号干扰小等优点。全世界通信系统中,90%以上的信息量都是经过光纤传输的。未来5~10年,我国规模实施光纤到户每年所需的光纤预计在一亿公里以上,从而为国内光纤通信业发展带来很好的机遇。据国际电信联盟最新统计,全球已推出宽带战略的国家和经济体达112个。宽带战略的实施,必将带来光纤接入大发展,并使光纤宽带产业成为整个信息通信产业中成长最快、发展空间最大的产业之一。 全球光纤到户热点门户网站——中国光纤通信网,是目前国内领先的光纤通信资讯类门户网站。随着中国三网融合和光纤到户的飞速发展,供用户交流的网上平台更少,专业的资讯比较分散。而中国光纤通信门户的开放,为行业内企业,用户,爱好者提供了一个在网络上的互相传递业界资讯,交换产品信息等提供了一个大型专业的平台。中国光纤通信门户的优势在于以提供行业资讯,新闻,专业知识,无数的产品供求信息,以及开放式的运营模式,多样化的增值服务,人性化的版面设计等。使您能更好更领先的掌握行业中的动态,获取更多的商机。从而为广大光纤通信企业拓展网络业务,进军电子商务提供不易多得的良机与契机。中国光纤通信门户特色:信息交流,技术沟通,产品展示,资讯阅览,新闻订阅,供求关系,寻求商机,广告服务,会员提升,企业建站,个性建设,协会资料,展会资源,行业人才,商务代理等。 光纤通信发展总趋势为:不断提高信息率和增长中继距离。系统的优值用“信息率”与“距离”的乘积表示,该值每年约增加一倍;发展光纤网,特别是光纤用户网-光纤到户;采用新技术,特别是掺稀土金属的光纤放大器,光电集成和光集成。①90年代初商用光纤通信系统的最高水平为2.488Gbit/s系统。实验室里实验系统信息率为8、10、16Gbit/s,相应的无中继距离为76、80、65km,信息率已高达20Gbit/s。单机的速率过高,大规模集成电路的电时分复用和解复器的速率将提高,要求激光器必须能在极高速率下稳定工作。如采用1.55μm波长,用常规单模光纤,将出现色散过大,码间干扰过大等都是技术上的困难。经济上也不合算。可采用光波分复用(OWDM)来提高信息率,实验室里复用数量用高达100个622Mbit/s的系统作复用,波长间隔为0.lnm,传输距离为50km,用非相干接收。还可采用副载波调制(SCM)来增加系统容量,将在光缆电视系统中应用。掺稀土金属铒的单模光纤放大器的成功,大大增加了系统的灵敏度和传输距离。近期发表的常规系统的环路试验,在此环路里有4支掺铒光纤放大器,传输速率为2.4Gbit/s和5Gbit/s,计算结果表明传输距离达21000km和9000km。波长为1.55μm,采用色散位移光纤。这个试验系统将在新的横跨太平洋和大西洋的光缆系统里实用。用光波分复用提高速率,用光放大增长传输距离的系统,为第五代光纤通信系统。新系系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,实验结果已达32Gbit/s,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。②光纤用户网-光纤到户,采用同步光纤网(SONET)或同步数字体系(SDH)和建立光纤用户网是实现宽带业务的两大步骤。光纤用户网有不同结构,其中之一如图5所示,中心局与远区局的连接,即本地网,可以用环状网路以提高网路的灵活性和效率。远区局到用户的网可以单星形或双星形网路。③掺铒光纤放大器具有增益高、带宽宽、噪音低、易与传输光纤连接、易于制造等优点,可作前置放大、线路放大和末级放大。可提高系统灵敏度,增长传输距离。把它用在用户网里,可扩大网的范围,也可增加用户数量,对光纤通信的发展将起重大作用。掺铒光纤放大器只工作在1.55μm,还需探索掺另一种稀土金属的光纤,得到在1.3μm工作的放大器。另外,为提高系统的可靠性和经济性,需要光电集成和光集成,对此已有不少实验成果。

Ⅳ 光纤传输系统的优势是什么

光纤传输系统的优势:

①当利用光纤传输系统进行长距离的传输的时候,同传统的电缆和电线相比,其画面的清晰度和保真度是非常突出的。

②光纤是一种绝缘体,雷击和电磁辐射等多种电气干扰对其是没有影响的,同时,同电力线或者是高压设备进行接触的过程中是不会出现相应问题的。

③在光纤传输的过程中,横条干扰、接地回路和图像撕扯等问题是不存在的,在此情况下,为传输的安全性提供了重要的保障,同时,当有人窃听的时候是非常容易发现的。

④天气因素对于光纤传输来说是几乎不产生影响的,正是因为如此,可以对光缆进行充分的应用,能够将其架设到外面,而且也能够将其铺设在地面上。与此同时,光纤被腐蚀的可能性是非常小的,因此,对于光缆的玻璃纤维来说,相关的化学用品是不会对其造成非常严重的影响的。

⑤对于多模和单模的光纤来说,相比于同轴的电缆,光缆的质量是非常轻的,同时,当对其进行应用的过程中,是不需要对放大镜进行相应的应用的,因此,在对设备进行维护的时候,操作起来是非常简单的,在远距离的信息传输中可以进行充分的应用。

(4)高速光纤视频传输系统扩展阅读:

光纤通信技术朝着多样化的方向发展,其技术水平的要求也在不断提高,在此情况下,对光纤通信技术的应用范围进行了相应的拓展,在更大程度上提高了通信能力。当下,相关的用户网接入了光纤,能够对多种方面的信息进行有效的接收,不过,当将光纤接入到多种用户网中的时候,其达到的问题并不明确,其准确性是非常低的,对接入的难度进行了很大的提高。

1.1 对当下光纤宽带入户的状况进行相应的阐述

对于光纤宽带来说,其最终的方式是光纤到户,这样的操作有着非常重要的作用和功能,对于用户来说是非常方便的,可以对用户提出的对于宽带不受限制的需求进行有效的满足。现在,我国的很多大型城市和中型城市中都建立了试商用网和实验网,同时,还有很大一部分的城市中制定出了光纤入户的建设和技术标准。

1.2 对光纤宽带入户的技术进行相应的阐述

当下,使用的光纤技术主要包括两种,分别是光纤有源接入技术和光纤无源接入技术。从光纤有源接入技术的角度来说,一般情况下,对媒介转换器进行了充分的应用,由此实现局端和用户连接的目的,发挥着重要的作用,可以给用户提供高速宽带的接入。从光纤无源接入技术的角度来说,其组成部分主要是PON技术。目前,在我国,对GPON进行了充分的应用,其工作效率是比较高的,并且提供了相应的业务,主要是TDM业务,当对这项业务进行应用的时候有着很大的便捷性,所以,此种技术的发展前景是非常好的。

Ⅳ 光纤高速传输技术是什么

光纤接入技术是面向未来的光纤到路边(HTTC)和光纤到户(HTTH)的宽带网络接入技术。光纤接入网(OAN)是目前电信网中发展最为快速的接入网技术,除了重点解决电话等窄带业务的有效接入问题外,还可以同时解决高速数据业务、多媒体图像等宽带业务的接入问题。OAN泛指从交换机到用户之间的馈线段、配线段及引入线段的部分或全部以光纤实现接入的系统。除了HFC外,光纤接入的方法还有以下几种: www.58live.com.cn (1) 光纤数字环路载波系统l www.58live.com.cnDLC系统以光纤传输方式代替馈线、配线,然后再以双绞线连接到用户。以传送窄带业务为主时采用PDH准同步时分复用技术体制,以传送宽带业务为主时可采用异步转移模式(ATM)加SDH同步时分复用技术体制。网络结构以点到点、链型或环型网结构为常见。传输速率34Mbps-155Mbps不等。传输距离可由几千米到上百千米。采用DLC技术可以将光纤到路边(FTTC)和光纤到户(FTTH)分期实现。该系统技术成熟,可靠性高,易于推广应用。国内已有多家厂商推出成熟产品,网上实际应用也最多。 www.58live.com.cn (2)基于ATM的无源光网络 www.58live.com.cn 无源光网络(PON)是采用光纤分支的方法实现点对多点通信的接入技术,可以支持iSDN基群或同等速率的各类业务。每个光网络单元(ONU)一般可以连接几个到几十个用户。APON是采用ATM信元传送方式的PON,可以是上、下行速率相等的对称系统,也可以是上、下行速率不相等的非对称系统,支持iSDN及B一iSDN业务的带宽需求,可以满足各类电信业务和全业务网(FSN)的共同要求。APON代表了宽带接入技术的最新发展方向,目前在英国、德国等已有实际应用,被认为是实现FTTC和FTTH的一种较好方法。APON的优点是可以节省光纤和光设备的费用,并可以实现宽带数据业务与CATV业务的共网传送。缺点是成本较高,如何经济地实现双向高质量传输仍是一个有待研究的问题。 www.58live.com.cn(3) 交换式数字视像技术 www.58live.com.cnSDV是在CATV网上采用波分复用(WDM)或分光纤技术共享光缆线路的网络接入技术。SDV技术与HFC技术比较,SDV是采用数字传输技术的系统,HFC是采用模拟技术体制的系统。因此,SDV具有较好的传输质量,便于升级,具有长远的发展前景。SDV采用光纤接入系统和ATM技术,采用分层面的方式提供电话、数据和视像信号的传输。第一个层面采用传统的光纤接入系统传输电话和数据业务。第二个层面采用基于SDH的ATM信元方式,支持交互式的数字视像等宽带业务。

Ⅵ 光纤传输系统的功能是什么

光纤传输系统的功能:

信息源把用户信息转换为原始电信号,这种信号称为基带信号。电发射机把基带信号转换为适合信道传输的信号,这个转换如果需要调制,则其输出信号称为已调信号,然后把这个已调信号输入光发射机转换为光信号,光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号,电接收机的功能和电发射机的功能相反,它把接收的电信号转换为基带信号,最后由信息宿恢复用户信息。

当下,使用的光纤技术主要包括两种,分别是光纤有源接入技术和光纤无源接入技术。从光纤有源接入技术的角度来说,一般情况下,对媒介转换器进行了充分的应用,由此实现局端和用户连接的目的,发挥着重要的作用,可以给用户提供高速宽带的接入。从光纤无源接入技术的角度来说,其组成部分主要是PON技术。

(6)高速光纤视频传输系统扩展阅读:

光纤传输系统的优势:

①当利用光纤传输系统进行长距离的传输的时候,同传统的电缆和电线相比,其画面的清晰度和保真度是非常突出的。

②光纤是一种绝缘体,雷击和电磁辐射等多种电气干扰对其是没有影响的,同时,同电力线或者是高压设备进行接触的过程中是不会出现相应问题的。

③在光纤传输的过程中,横条干扰、接地回路和图像撕扯等问题是不存在的,在此情况下,为传输的安全性提供了重要的保障,同时,当有人窃听的时候是非常容易发现的。

④天气因素对于光纤传输来说是几乎不产生影响的,正是因为如此,可以对光缆进行充分的应用,能够将其架设到外面,而且也能够将其铺设在地面上。与此同时,光纤被腐蚀的可能性是非常小的,因此,对于光缆的玻璃纤维来说,相关的化学用品是不会对其造成非常严重的影响的。

⑤对于多模和单模的光纤来说,相比于同轴的电缆,光缆的质量是非常轻的,同时,当对其进行应用的过程中,是不需要对放大镜进行相应的应用的,因此,在对设备进行维护的时候,操作起来是非常简单的,在远距离的信息传输中可以进行充分的应用。

Ⅶ 光纤传输视频信号速率多少百米外损耗多少,具体点

光纤传输视频信号速率多少: 一根光纤每秒传输速度是在1000G以上 ADSL是单行线,光纤就是高速公路, 百米外损耗多少: 0.028*200/70=0.08 0.08*120*120=1.152 1.152*3=3.45度/小时

Ⅷ 光纤传输系统的基本环节

《高速光纤传输系统》首先介绍了现代光通信系统的结构和组成部件,然后分析影响传输系统性能'的因素和提高性能的关键技术,最后给出了一些系统的设计实例,这些实例均是作者完成的研究成果。

Ⅸ 光纤传输视频信号需要哪些设备

方式一:加视频光端机1对,根据你前端的摄象机数,选择光端机的视频路数,如果想控制,可以在选择视频路数的基础上增加1路反向数据,看好了是选择视频光端机,不是一般的光端机设备:视频光端机1对,尾纤盒XX个,跳线XX根,XX要知道是传几个头的图象才能告诉你方式2:采用光纤收发器

Ⅹ 高速大容量长距离的dwdm光纤通信系统需要解决哪些关键技术

光纤通信不同于有线电通信,后者是利用金属媒体传输信号,光纤通信则是利用透明的光纤传输光波。虽然光和电都是电磁波,但频率范围相差很大。一般通信电缆最高 使用频率约9-24兆赫(10(6)Hz),光纤工作频率在10(14)-10(15))Hz之间。 光纤通信最主要的优点是:(1) 容量大。光纤工作频率比目前电缆使用的工作频率高出8-9个数量级,故所开发的容量很大。(2) 衰减小。光纤每公里衰减比目前容量最大的通信同轴电缆的每公里衰减要低一个数量级以上。(3) 体积小,重量轻。 同时有利于施工和运输。(4) 防干扰性能好。光纤不受强电干扰、电气化铁道干扰 和雷电干扰,抗电磁脉冲能力也很强,保密性好。(5) 节约有色金属。一般通信电 缆要耗用大量的铜、铝或铅等有色金属。光纤本身是非金属,光纤通信的发展将为国家 节约大量有色金属。(6) 成本低。目前市场上各种电缆金属材料价格不断上涨,而 光纤价格却有所下降。这为光纤通信得到迅速发展创造了重要的前提条件。 光纤通信首先应用于市内电话局之间的光纤中继线路,继而广泛地用于长途干线网上,成为宽带通信的基础。光纤通信尤其适用于国家之间大容量、远距离的通信,包括 国内沿海通信和国际间长距离海底光纤通信系统。目前,各国还在进一步研究、开发用于广大用户接入网上的光纤通信系统。 随着光纤放大器、光波分复用技术、光弧子通信技术、光电集成和光集成等许多新技术不断取得进展,光纤通信将会得到更快的发展。 宽带,顾名思义是传输带宽很宽的意思。通常是相对于传统的窄带的电信网而言的,其本身其实并没有很严格的定义,主要是指在同一传输介质上,使用特殊的技术或者设备,利用不同的频道进行多重(并行)传输,并且速率在256Kbps以上。至于到底多少速率以上算作宽带,目前没有国际标准,有人说大于56K就是宽带,有人说1Mbps以上才能算宽带,并没有定论。国际电联在早些时候召开过关于宽带通信的会议,美国提出把200Kbps以上的传输带宽定义为宽带,即每秒传输20万个"比特",相当于2.5万个英文字符或1.25万个中文字符。200Kbps的带宽使计算机上的小窗口图像能够比较清晰,如果用来传声音,质量极高。目前我们使用的电话,尽管其传输带宽在64K以下,但已经可以通过音质分辨熟悉的人了,而且随着数字压缩技术的发展,8Kbps的带宽就完全可以传输连贯的声音了。 宽带的通信质量和能力都远远超越了我们目前普遍使用的窄带通信系统,主要表现在数据通信能力、图像通信能力方面。我们可以想象眨眼之间就看到纽约、东京证交所的大屏,每一处细微的抖动都清晰可见;我们也可以想象在家里随时点播某一曲MTV或是一部好莱坞大片;宽带网甚至可以为分布在世界各地的人召开电视会议,看清彼此的动作、表情、语气,就像只相距1米一样。换句话说,只要带宽足够宽,任何信息都能够最迅速和准确的传递。 宽带通信近年在世界上发展非常快。目前,在宽带网的建设和使用普及率上居世界首位的是韩国,其宽带网普及率为57.3%;美国的宽带网普及率为11.l%;欧盟各国也正在发展各自的宽带网络。我国则是刚刚起步,但发展速度很快。 宽带主要有以下特点: 传输速率高(提供100兆到大楼、10兆到桌面的高速接入)。每个用户的最大速率都远远大于56K和ISDN。这样,有效地保证了图像、声音、数据传送的清晰度和连贯性,无论是通过电子邮件收发大型文件还是下载图像或软件均可在瞬间完成。 提供各种多媒体服务(视频点播、远程教育、远程医疗、电子商务、举行电视会议、拨打视频电话等)。 相对费用低。一方面高速的连接节约了大量网上等待时间,使上网费用大大降低。另一方面,宽带接入技术都不通过传统的电话网络交换机,不存在占用电话线的问题,无需交纳电话费,进一步减少了用户的上网费用。 24小时随意上网,不受时间限制。 结构简单,维护方便(只需增加一个附加设备即可) 可靠性和安全性高、扩展性强。