..

『壹』 请详细描述火箭发动机的现发展阶段,发展成果,应用原理,实例

现在火箭正从传统火箭向小型推力化发展,在发展中因为传统火箭发动机推进依靠气体膨胀来推进,然而气体膨胀速度只有3-4米一秒,于是被迫放弃在太空中长时间用该方法推进,依据康士坦丁的火箭推力方程,在外太空中推进剂质量取决于推进速度和所要求的速度增量,当对外太空星球探测时,几乎推进剂要占去90%以上,成本极高,现在主要成熟的是微波推进技术,等离子推进技术,太阳帆推进技术,尤其是等离子推进技术较为成熟,它以等离子体为推进动力,以激光照射气体,使其加速到极高速度,等离子推进,电推进方式之一。即等离子体中的电子在交叉垂直的电场和磁场的作用下做霍尔漂移运动,而喷射出的离子形成推力来推进航天器前进。目前的等离子推进是深空探测、卫星轨道保持方面最有前途的电推进方式。30年前,在哥斯达黎加出生,有1/4华人血统的张福林(Franklin R. Chang Diaz)还在麻省理工大学攻读等离子物理学博士学位时就这么认为。到了2009年6月,作为前航天员兼物理学家,Ad Astra火箭公司创始人、首席设计师,张福林带领着团队成功测试了VASIMR的第一节引擎后,对这一观点更加坚定。VASIMR,全功率可变比冲的磁等离子体火箭(Variable-specific-impulse magnetoplasma rocket),尽管离最终完善仍有距离,但已经在航天界中引起了巨大反响。因为,当它真正诞生,登陆火星的时间将会从250天缩短为39天。石墨烯在光作用下的运动现象,这一发现可作为新的太空动力来源,碳世纪发现了这项重大应用发现,并成功研制了该项装置,充分展示了石墨烯材料火箭的光推动作用,[1] 使电推动不再受化学试剂的限制。在科幻小说中,飞行器总能为星际旅行的全程提供动力。但在现实中,火箭推进器的发动机技术,根本无法实现这一点。相对于裸露在外的推进剂储箱,化学火箭的发动机看上去很小,但它的胃口很大。“吃得多,干活的效率却不高。”张福林说。这种发动机吞噬掉的海量能源,只在提供短期动力方面有效——储存的燃料很快用完,推进器马上被当成垃圾扔掉。化学火箭的大部分燃料被用来摆脱地球引力,剩余的一点则被用来推动火箭的“太空滑行”。火箭飞往目的地,仅仅是依靠惯性。对于星际飞行来说,这种引擎显然力不从心。“土星5号”就是典型代表。它的第一级装有2075吨液氧煤油推进剂。一旦发动机点火,它可以在2分34秒内全部“喝”完这些“饮料”。高温气体以2900米/秒的速度喷射,却仅仅够将47吨的有效载荷送上月球。在全部能够产生的3500吨推力中,很大一部分被用来“拖”起火箭自身和2000多吨燃料。所以它的“比冲量”并不高,只有300多秒,表明了它的推进效率的低下。这就是为什么要将一个质量很小的人送上太空,却必须使用一枚巨大火箭的原因。等离子发动机,或者俗称的“离子推进器”采取了一种和化学火箭完全不同的设计思路。它使用洛伦兹力让带电原子或离子加速通过磁场,来反向驱动航天器,和粒子加速器与轨道炮都是同样的原理。“等离子火箭在一定时间内提供的推力相对较少,然后一旦进入太空,它们就会像有顺风助阵的帆船,逐渐加速飞行,直至速度超过化学火箭。”张福林说。实际上,迄今已有多个太空探测任务采用等离子发动机,如美国宇航局探测小行星的“黎明号”(Dawn)探测器和日本探测彗星的“隼鸟号”(Hayabusa)探测器,而欧洲空间局撞击月球的SMART-1探测器的目的之一,就是验证如何利用离子推进技术把未来的探测器送入绕水星运行的轨道。这些已经实用的离子发动机都很迷你,多属于辅助发动机,推力和加速度都很小,要使航天器达到预定的飞行速度,用时极长—SMART-1的等离子体发动机提供的加速度只有0.2毫米/秒方,推力只相当于一张纸对于手掌的压力。这样的发动机,带上一只蚂蚁都无法脱离地球的重力场。但它们在太空中的表现能够弥补这个缺陷。优越的比冲量,也就是能用更少的燃料提供更多的动力,使它最终能把传统的化学火箭远远抛在身后。“1998年发射的深空1号(Deep Space 1),由德尔塔火箭送上太空,然后由离子发动机推动。它的离子发动机产生0.09牛顿的推力,比冲量相当于液体火箭的10倍。每天消耗100克氙推进剂,在发动机全速运转的情况下,每过一天时速就增加25~32米。它最终的工作时间超过14000小时,超过了此前所有传统火箭发动机工作时间的总和。”张福林介绍道。正是这一原因,使等离子发动机成为航天界新的宠儿。等离子发动机中的新秀VASIMR被美国航空航天研究所(AIAA)列为2009年十大航天新兴项目。NASA的新任掌门人查尔斯·博尔登(Charles Bolden)也非常看好VASIMR,NASA向Ad Astra 火箭公司提供经费,希望他们能够完成自己的承诺——让VASIMR在2012年或2013年能够安装到国际空间站上进行点火测试。现在大部分国外航空器都以此为动力最为著名的因为NASA的曙光号(Dawn),该飞行器目的为灶神星,谷神星,以其距离过远只能用等离子推进

『贰』 火箭推进器原理

火箭推进原理 火箭推进理论是航天理论的基础之一。火箭发动机是一种推进工具,它能提供强大动力,使航天器达到所需要的宇宙速度。它的工作是基于直接反作用运动的原理,这一原理特别有利于高速航行。 那么什么是直接反作用运动呢? 按照牛顿力学基本定律,两个相互作用的物体,其作用力与反作用力总是同时存在,它们的大小相等,方向相反。因此,任何一种移动,广义地说,都是反作用运动。举两个例子:一是轮船,由于船的叶轮作用在水上,水的反作用力使船前进;二是喷气式(飞机)发动机,由于发动机中的燃料燃烧,膨胀的燃气高速向后喷出,发动机便得到与燃气喷出方向相反的推力而向前运动。 以最一般的观点去研究产生推力的现象时,上述两种运动没有任何区别,它们都是在反作用力的推动下运动的。但是,从反作用力产生的特征来看,二者是有区别的:在第一个例子中,发动机本身不能引起运动,它仅是个能源,若船上有发动机而没有叶轮,那么,发动机的功率再大,船也是不能运动的。因此,除了发动机(能源)外,有着一个介于发动机和外界某物体(如本例中的水)之间的中间机构,它与外界某物体相互作用,井承受由此产生的反作用力。这种中间机构,通常称为推进器(如本例中的叶轮);在第二个例子中,没有中间机构,推力是由燃气对发动机本身的反作用产生的。我们把前一种类型的运动称为间接反作用运动,后一种类型的运动称为直接反作用运动。当然,也有直接与间接反作用运动并存的混合式,如:涡轮螺浆式发动机,发动机能量的一部分传给螺旋浆(推进器),另一部分,则产生燃气流的直接反作用运动。 喷气推进属于直接反作用运动。那么什么是喷气推进呢?将物质以气体喷射的形式从被推进的物体中喷出,这种推进方式称为喷气推进。 喷气推进所喷射的物质叫做推进剂;利用喷气推进产生推力的发动机,叫做喷气发动机。运动时,相互作用的物体,一个是发动机本身,另一个是从它内部喷出的高速气流。高速气流产生的反作用力作用于发动机本身,方向与气流方向相反,这就是推力。 喷气发动机分为两大类: 一是空气喷气发动机,它是利用大气来产生喷气射流的喷气发动机。例如:以大气中的氧气作为氧化剂,燃烧燃料产生燃气射流;或在核子热交换器中加热空气,然后由喷管排出; 二是火箭发动机,它是自身携带全部喷射物质的喷气发动机。例如:带有氧化剂和燃烧剂以产生燃气射流。 火箭发动机所达到的推力和速度远远超过了一般的推进方法。这种发动机不依赖周围介质条件,在空间环境也能工作,这一特点,保证了在不同飞行速度下,发动机产生的推力不受空气接受能力的影响,而是恒定的,这也使得火箭(发动机)所能达到的飞行速度比其它任何类型发动机要高得多;其次,由于是直接反作用运动,没有中间机构,在主要的喷射通道中不存在限制工作温度的运动机构,这就决定了火箭发动机的结构简单,而所产生的推力却很大。

『叁』 传统化学火箭发动机能否与霍尔推进器结合,使之实现高比冲和大推力

王者一个是非常厉害的一个东西,推大力

『肆』 一、单选题V 1. 航天技术的核心是A. 火箭推进技术B. 飞机发动机技术C. 外形设计D. 控制技术拜托各位大

一.单选题:1.A 2. D 3.A 4.B 5.D 二.多选题:1.ABC 2.ACD 3.ABCD 4.A 5.AB麻烦采纳,谢谢!

『伍』 火箭推进器掉下掉哪里去

大部分会掉到无人区,小概率会掉到居民区。

中国的几种火箭均有固定的落区范回围,一答般选择人口稀少的地区,一般是两省之间,落地的区域宽度一般在30公里,长度为50-70公里。万一发射过程中出现意外,国家和地方需要给当地居民赔偿。我国一直在考虑如何控制火箭的落点,比如“可回收”火箭,这种火箭的推进器分离后可以像飞机一样,飞回指定地点,从根本上解决残骸问题。

(5)火箭推进系统发动机扩展阅读:

在我国,火箭残骸坠落造成的损失,一般由国家和地方赔偿。而2011年俄罗斯“子午线”卫星发射失败的碎片砸中一栋民房,赔偿金则由一家商业保险公司支付,因为卫星发射投了责任险。美国也规定必须购买第三者责任险,且超过最高赔偿限额的部分,政府需提供额外的保险担保,上限为15亿美元。此外,美国宇航局明确其经费的一部分用来购买保险。英国、德国、日本、澳大利亚等国亦有相似规定。

『陆』 固体火箭发动机的基本原理

火箭是以热气流高速向后喷出,利用产生的反作用力向前运动的喷气推进装置。通常火箭一词也包括导弹、航天器,甚至烟花焰火。最常见的火箭燃烧的是固体或液体的化学推进剂。推进剂燃烧产生热气,通过喷口向火箭后部喷出气流。火箭自带燃料和氧化剂,而其他各种喷气发动机仅须携带燃料,燃料燃烧所须的氧取自空气中。所以,火箭可以在地球大气层以外使用,而其他喷气发动机不能。火箭发射时产生巨大的推力使火箭在很短的时间内迅速升入高空,随着燃料不断减少,火箭自身质量逐渐减小,在与地球距离增大的同时,质量和重力影响不断下降,火箭速度也因此越来越快。“土星”5号火箭启程登月时,5台发动机每秒钟消耗近3吨煤油,它们产生的推力相当于32架波音747的起飞推力。无法确定火箭发明的确切时间。大部分专家认为中国人早在13世纪就研制出了实用的军用火箭。19世纪出现了几项重大技术进步:燃料容器的纸壳改为金属壳,延长了燃烧的持续时间;火药推进剂的配方标准化;制造出发射台;发现了自旋导向原理等等。19世纪末,火箭开始用于非军事目的,如用火箭携带救生索飞向海上遇难船只。19世纪末20世纪初美国科学家戈达德和其他几位专家奠定了现代火箭技术的基础,并发射了第一枚液体燃料火箭。20世纪70年代,美国研制出全新的火箭动力航天运载工具即航天飞机。它主要分3个部分:机身后部装有3台主发动机的轨道飞行器;装有液氢和液氧推进剂的外挂燃料箱(5分钟后脱落),保证主发动机工作;装有2台可分离的固体燃料火箭发动机(2分钟后脱落),它们与轨道飞行器主发动机同时启动,提供初始升空阶段的推力。1981年4月12日,人类第一架航天飞机“哥伦比亚”号发射升空。 火箭是依靠火箭发动机喷射工质产生的反作用力推进的飞行器。它自身携带燃烧剂与氧化剂,不依赖空气中的氧助燃,既可在大气中,又可在外层空间飞行。火箭在飞行过程中随着火箭推进剂的消耗,其质量不断减小,是变质量飞行体。现代火箭可用作快速远距离运送工具,如作为探空、发射人造卫星、载人飞船、空间站的运载工具,以及其他飞行器的助推器等。如用于投送作战用的战斗部(弹头),便构成火箭武器。其中可以制导的称为导弹,无制导的称为火箭弹。 简史 火箭起源于中国,是中国古代的重大发明之一。中国古代火药的发明与使用,为火箭的发明创造了条件。 北宋后期,民间流行的可升空的“流星” (后称“起火”),就利用了火药燃气的反作用力。按其工作原理,“流星”一类的烟火就是世界上最早用于观赏的火箭。南宋时期,不迟于12世纪中叶出现了军用火箭。到了明代初年,军用火箭已经相当完善并被用于战场,称为“军中利器”。明初时期的兵书《火龙神器阵法》和明代晚期的兵书《武备志》等有关文献,都详细记载了中国古代火箭的制作和使用情况,仅《武备志》就记载了20多种火药火箭,其中“火龙出水”火箭已是二级火箭的雏形。 中国古代火箭技术传到欧洲之后,经改进,火箭 曾被列为军队的装备。早期的火箭射程近、落点散布大,以后被火炮代替。第一次世界大战后,随着科学技术的不断进步,火箭武器得到迅速发展,并在第二次世界大战中发挥了威力。 19世纪末20世纪初,液体火箭技术开始兴起。1903年,俄国的К.E.齐奥尔科夫斯基提出了制造大型液体火箭的设想和设计原理。1926年,美国的火箭专家、物理学家R. H. 戈达德试飞了第一枚无控液体火箭。 1944年,德国首次将有控的、用液体火箭发动机推进的V—2导弹用于战争。第二次世界大战以后,苏联和美国等相继研制出包括洲际弹道导弹在内的各种火箭武器。 中国于20世纪50年代开始研制新型火箭。1970年 4月24日,用“长征”1号三级运载火箭成功地发射了第一颗人造地球卫星。1975年11月26日,用更大推力的“长征”2号运载火箭(图1)发射了可回收的重型卫星。1980年5月18日,向南太平洋海域成功地发射了新型火箭。1982年10月,潜艇水下发射火箭又获成功。1984年4月8日, 用第三级装液氢液氧火箭发动机的 “长征”3号运载火箭(图2)成功地发射了地球同步试验通信卫星。1988年9月7日,用“长征”4号运载火箭(图3)将气象卫星成功地送入太阳同步轨道。1992年8月14日,新研制的“长征”2号E捆绑式大推力运载火箭又将澳大利亚的奥赛特B1卫星送入预定轨道。这些都表明火箭发源地的中国,在现代火箭技术领域已跨入世界先进行列,并已稳步地进入国际发射服务市场。 在发展现代火箭技术方面,中国的钱学森、美国的W.von布劳恩和苏联的S.P.科罗廖夫等都做出了杰出的贡献。 分类与组成 火箭可按不同方法分类。按能源不 同,分为化学火箭、 核火箭、电火箭以及光子火箭 等。化学火箭又分为液体推进剂火箭、固体推进剂火箭和固液混合推进剂火箭。按用途不同分为卫星运载火箭、布雷火箭、气象火箭、防雹火箭以及各类军用火箭等。按有无控制分为有控火箭和无控火箭。按级数分为单级火箭和多级火箭。按射程分为近程火箭、中程火箭和远程火箭等。火箭的分类方法虽然很多,但其组成部分及工作原理是基本相同的。 火箭的基本组成部分有推进系统、箭体和有效载 荷。有控火箭还装有制导系统。 火箭推进系统是火箭赖以飞行的动力源。其中火 箭发动机按其工质,可分为化学火箭发动机、核火箭发动机、电火箭发动机和光子火箭发动机等。广泛使用的是化学火箭发动机,它是依靠推进剂在燃烧室内进行化学反应释放出来的能量转化为推力的。推力与推进剂每秒消耗量之比称为比冲,它是发动机性能的主要指标,其高低与发动机设计、制造水平有关,但主要取决于所选用的推进剂的性能。火箭发动机的推力,是根据其特点和用途选定的,其大小相差很大,小到微牛,如电火箭发动机;大到十几兆牛,如美国航天飞机的固体火箭助推器。 对有控火箭而言,为保证火箭准确地导向目标, 还装有制导系统。制导系统控制火箭的质心运动和绕质心的转动(俯仰、偏航与滚动),将火箭稳定而精确地导向目标。制导系统的日臻完善和制导精度的不断提高,是火箭技术发展的一大特点。 箭体用来安装和连接火箭各个系统,并容纳推进 剂。箭体除要求具有良好的空气动力外形外,还要求在既定功能不变的前提下,质量越轻越好,体积越小越好。在起飞质量一定时,结构质量轻,则可获得较大的飞行速度或射程。 运载火箭的有效载荷有人造卫星、飞船或空间探 测器等航天器。火箭武器的有效载荷就是战斗部(弹头)。 为成功地发射火箭,还必须有地面发射设备和发 射设施。地面发射设备有大有小。小的可手提肩扛,如便携式防空火箭和反坦克火箭的发射筒(架);大的如卫星运载火箭,则需有固定的发射场和庞大的发射设施,以及飞行跟踪测控台站等。 现状与发展趋势 20世纪50年代以来,火箭技术 得到了迅速发展和广泛应用,其中尤以各类可控火箭武器(导弹)和空间运载火箭发展最为迅速。从火箭弹到反坦克导弹、反飞机导弹和反舰导弹以及攻击地面固定目标的各类战术导弹和战略导弹,均已发展到相当完善的程度,已成为现代军队不可缺少的武器装 备。各类火箭武器正在继续向提高命中精度、抗干扰能力、突防能力和生存能力的方向发展。此外,反导弹、反卫星等火箭武器也正在研制和发展之中,在地地弹道导弹基础上发展起来的运载火箭,已广泛用于发射卫星、载人飞船和其他航天器等。 80年代初, 苏、 美两国已经分别研制出六、 七个系列的运载火 箭。其中,美国载人登月的“土星”5号火箭,直径10米,长111米,起飞质量约2930吨,近地轨道运载能力为127吨。苏联的“能源”号火箭,起飞质量约2000吨,近地轨道运载能力约为100吨。中国的“长征”2号E火箭(图5),采用了并联助推技术,不仅提高了运载能力,还为进一步发展更大运载能力的火箭奠定基础。运载火箭正向着高可靠性、低成本、多用途和多次使用的方向发展。可多次往返于太空和地球之间的航天飞机的问世就是这一发展趋势的体现。火箭技术的飞速发展,不仅可提供更加完善的各类导弹和推动相关科学的发展,还将使开发空间资源、建立空间产业、空间基地及星际航行等成为可能。

『柒』 怎样自己DIY一个小型的火箭发动机(推进器)和一个小火箭。我只是小学三年级,没有很多的材料,要简易!

要飞天上的吗,飞多高?要简易的有,不过不美观,也许你有见过,但专自己动手才是乐趣所属在,小盆友,我看好你!简易火箭:材料:矿泉水瓶,自行车嘴连同那个螺纹管(那个长长的,连接在内胎上的那个),打气筒,卡纸,木棍等可自行添加材料工具:剪刀,胶水,铅笔等,小心使用哦方法简述:用矿泉水瓶做火箭主体,用卡纸做出火箭导流翼贴于瓶身,位置自己根据所见火箭布置。将瓶盖开个小孔,把自行车螺纹放进去,刚好卡主最好,然后自己找材料将缝隙补好。用木棍或其他材料做火箭发射塔。工程差不多结束了,进入测试阶段。将瓶子装三分之一的水,拧上瓶盖,把自行车嘴安好(不要固定死了),连接打气筒,将连接好的火箭安放到发射架上,注意不要朝着自己,朝着天上最好,这样飞得最高,然后打气,打几下火箭就发射了,发射成功!注意事项:1、要在家长陪同下试验火箭!2、细节方面自己动脑筋解决。

『捌』 如何自制液体火箭发动机(不能要固体推进器)

后果自负。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。材料 氧化剂(双氧水`液氧`四氧化二氮等) 燃料(乙醇`煤油`液氢)储存罐 筏门 液体火箭发动机 铁皮 电子点火器 摄象机 导航系统 回收系统 降落伞系统 焊枪 烧蚀材料 1。将一个储存罐与另一个储存罐用筏门连接,再用焊枪把两个储存罐与发动机焊在一起 2。用铁皮把刚才做好的东西卷起来焊在一起,涂上烧蚀材料。 3。用铁皮做一个圆锥的头装上回收系统 降落伞 摄象机装在外部 4。将导航系统 装在发动机里 5。将火箭竖在发射台上 6。将电子打火器连接发动机,扑一根1000米的电线连接电源 7。注入燃料 8。8小时准备 5小时准备 2小时准备1小时准备 30分钟准备 15分钟准备 10分钟准备 5分钟准备 1分钟准备 9。你站在1000米以外,按下按钮。 记住,失败是成功之母 后果自负。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

『玖』 火箭发动机是多少马力

火箭发动机马力为1500~5000米/秒。

化学火箭发动机主要由燃烧室和喷管组成,化学推进剂既是能源也是工质,它在燃烧室内将化学能转化为热能,生成高温燃气经喷管膨胀加速,将热能转化为气流动能,以高速1500~5000米/秒从喷管排出,产生推力。

化学火箭发动机按推进剂的物态又分为液体火箭发动机、固体火箭发动机和混合推进剂火箭发动机。液体火箭发动机使用常温液态的可贮存推进剂和低温下呈液态的低温推进剂,具有适应性强、能多次起动等特点。

(9)火箭推进系统发动机扩展阅读:

2019年12月25日北京星际荣耀空间科技有限公司自主研发的可重复使用液氧甲烷发动机焦点一号25日顺利完成500秒全系统长程试车,刷新了我国民营液体火箭发动机试车时长新纪录。

据介绍,这是国内首台突破单机全系统试车500秒、转入可靠性增长试车阶段的液氧甲烷发动机,意味着该型发动机突破产品交付应用的重大节点,为2020年实现国内首次可重复使用液体运载火箭百公里垂直起降试验奠定了坚实的技术基础。

此次500秒长程试车覆盖预冷、启动、主级工况、关机及重复使用后模拟处理等全流程。试验过程中,发动机点火、启动及关机时序正常,发动机主级工况室压、温度、涡轮转速、振动等参数平稳,达到设计要求。试车时间持续500秒,试验获得圆满成功。

『拾』 最新一代的火箭推进器是什么型号

不知道你问的哪个国家的 美国 俄罗斯 欧盟 中国?俄罗斯的rd170发动机每台的地面推力就达740吨,是目前世界上推力最大的液体火箭发动机。一台发动机就几乎相当于中国长征系列采用的火箭发动机如YF-20B的十台以上,而且比冲更高rd170可以重复使用,1993年第10期《中国航天》“rd170使用液氧煤油作推进剂,从设计上说,可在大修前重复使用20次”rd170至今仍在天顶号系列火箭上使用,今年十月将把中国的萤火号卫星送入火星探测轨道而用于能源号芯级液氢液氧火箭发动机rd-0120同样非常先进“RD-0120是大推力氢氧发动机,能源号火箭芯级采用4台RD-0120作为动力装置。每 台发动机的真空推力200 t,真空比冲455 s。它与美国航天飞机主发动机水平相当,在某 些材料、工艺方面,还超过了美国航天飞机主发动机。 ”世界航天运载器大全的第309页上说这个发动机“具有寿命长,可重复使用的特点”“能源号”十分重视安全与可靠性,强化了地面试验。在飞行中即使助推级或芯级有一台发动机出现故障,火箭仍可继续进行有控制的飞行。火箭的推重比可以降低到1.25:1“能源号”是作为火箭—空间大系统的一个组成部分和这个大系统的其它组成部分统一协调发展的。大系统自1976年开始,由能源科研生产联合体负责研制。整个系统的研制费用高达140亿卢布或524亿美元(1989年币值)。大系统中“能源号”火箭的总设计师是古巴诺夫(S.H.FyaaHoB)。有近百个设计局、工厂、企业和研究所直接参加了“能源号”的研制工作。目前投入使用的仅是“能源号”的基本型,于1987年5月15日首次发射,1988年11月15日第二次发射,运载了“暴风雪号”轨道飞行器,两次发射都获得成功。主要技术性能(基本型)级数 2级 起飞推力 34833kN全长 60.155m 推重比 1.48:1最大宽度 20m 运载能力(200km轨道) 105t子级质量 2400t推进剂质量~2000t助 推 级级长 32.120m 推进剂 液氧/煤油发动机 4台PJI—170发动机 地面比冲 3033N·s/kg地面推力 29028kN 工作时间 ≈150s真空推力 31616.8kN芯 级级长 60.155m 推进剂质量 7172550kg 直径 8.076m 发动机 液体火箭发动机工作时间 381.0s 推进剂 液氧/液氢地面推力 5805kN 真空比冲 4452N·s/kg真空推力 7845.2kN 总 体 布 局“能源号”火箭在总体布局上继续沿用了苏联大型运载火箭自50年代后期以来广泛采用的横向捆绑助推器的结构形式,即在芯级周围捆绑不同数量的助推器,用以构成助推级。1987年5月投入使用的仅是“能源号”火箭的基本型。从外形图可以看出,它由芯级、助推级与有效载荷组成,助推级则由捆绑在芯级两侧的4个相同的液体火箭助推器组成。。助 推 级助推级由4个相同的助推器构成,每个助推器长32m,直径4m,质量约为375t。这种助推器设计成一种标准的通用部件,可用于多种运载火箭,最初是作为“天顶号”(3EHI/IT)运载火箭的一子级而进行研制的,其性能已通过“天顶号”火箭从1985年开始的10多次飞行试验成功地得到了验证。“天顶号”一子级用作“能源号”的助推器时,在结构上作了局部改进与加强,以适应捆绑助推级的需要。助推器由南方科研生产联合体研制。每个助推器在结构上由液氧箱、箱间段、煤油箱和尾段组成。尾段内装设一台4燃烧室的PⅡ—170发动机,由一个配置在4个燃烧室之间的涡轮泵同时向4个燃烧室输送推进剂。发动机的性能参数与“天顶号”火箭一子级发动机的相同。液氧箱与煤油箱均利用冷氦增压系统增压,氦气来自浸泡在液氧箱内的氦气瓶,经加温器加温后,向贮箱增压。